Preliminary Results from an Ongoing Phase 2a Study to Investigate the Effect of a Single Dose of Migalastat HCl on Active Agalsidase Levels in Fabry Patients Receiving Enzyme Replacement Therapy


University of Alabama at Birmingham School of Medicine, Division of Nephrology, Birmingham, AL USA, 1 Department of Medicine, University of Montreal, Quebec, Canada, 2University of Iowa Children’s Hospital, Iowa City, Iowa USA, 3 O & O Alpan LLC, Norfolk, VA USA, 4 Department of Nephrology, Royal Melbourne Hospital, Parkville, Vic.AU, 5Linear Clinical Research Ltd, Queen Elizabeth Medical Centre, Nedlands Western Australia, 6Emory University School of Medicine, Emory Genetics Clinic, Athens, GA USA, 7Universitat Ziekenhuis Antwerpen, Belgium, 8Amicus Therapeutics, Cranbury, NJ USA and 9Glaxo Smith-Kline, Research Triangle Park, NC USA

Objectives and Study Design
Fabry disease is an X-linked lysosomal storage disease caused by mutations in GLA, the gene encoding for α-Gal A. A treatment approach to Fabry disease (HCl) (AT1001: GR18143A) is a pharmacological chaperone that binds and stabilizes mutant forms of α-Gal A. When co-administered with an Enzyme Replacement Therapy (ERT), such as agalsidase alpha or beta, migalastat HCl is intended to bind to and stabilize the enzyme in the circulation. AT1001-013 (NCT #01198081) is an ongoing open-label, non-randomized, 2-dose cohort, Phase 2a drug interaction study to evaluate the safety and pharmacokinetic (PK) effects of the co-administration of oral migalastat HCl with intravenous agalsidase in male patients with Fabry disease. Patients received an IV infusion of ERT alone, followed by co-administration of either 150 mg or 450 mg migalastat HCl 2 hours prior to IV infusion of ERT, and 150 mg migalastat HCl alone 7 days after the next infusion of ERT.

Preliminary Results

Patient Disposition and Demographics
To date, 12 patients with plasma and skin active enzyme levels with and without 150 mg migalastat HCl, and plasma migalastat PK with and without agalsidase have been evaluated.

Eight patients received agalsidase beta alone and 4 patients received agalsidase alpha alone following co-administration with 150 mg migalastat HCl 2 hours prior to initiation of agalsidase; all patients received a single dose of 150 mg migalastat HCl 7 days after their next regularly scheduled ERT visit.

Four patients (identified as Patients A, B, C, and D) received IV infusions of agalsidase alpha 0.2 mg/kg for ~40 minutes.

Five patients (identified as Patients E, F, G, H, and I) received IV infusions of agalsidase beta 0.5 mg/kg for ~2 hrs with 1 exception: Subject G was infused 40 minutes longer during co-administration, then during agalsidase beta alone.

Three patients (identified as Patients J, K, and L) received IV infusions of agalsidase beta 1.0 mg/kg for ~3-hr durations.

All patients were males with Fabry Disease aged 37-60 years, body mass index (BMI) ranged from 16.9-26.0 kg/m² and estimated GFR ranged from 52-88 mL/min.

To date, no deaths and two serious adverse events (SAEs) in one subject have occurred. One of the SAEs was a transient ischemic attack (TIA) which occurred during screening. The other was a hospitalization for acute pain and acroparesthesia due to Fabry Disease which occurred approximately 5 months after the most recent dose of study drug.

The SAEs were deemed unlikely related to study drug. All other treatment emergent AEs were considered unrelated to study drug and except for one, were mild in intensity.

Seven of the 12 patients had plasma and skin active enzyme levels following co-administration with 150 mg migalastat HCl and 150 mg agalsidase for ~2 hrs; plasma and skin active enzyme levels following co-administration with 150 mg migalastat HCl and 150 mg agalsidase beta for ~7 hrs; and plasma active enzyme levels following co-administration with 150 mg migalastat HCl and 450 mg migalastat HCl for ~7 hrs.

Increases of 2-fold to 5-fold in plasma levels of active enzyme (agalsidase activity) AUC were observed following co-administration of 150 mg migalastat HCl with agalsidase relative to agalsidase alone. When agalsidase was administered alone, 0.2 mg/kg agalsidase alfa alone (N=4) 300 (29.6) 0.67 (0.67 - 1.0) 370 (15.6) 4.1 (3.4) -

1.0 mg/kg agalsidase alfa + 150 mg migalastat HCl (N=3) 2292 (38.7) 2.0 (2 - 3) 9446 (31.1) 4.3 (1.7) 2.0 (16.2)

A geometric mean (CV%) ratio of migalastat + agalsidase to migalastat alone = 1.0). [Note, all means presented are geometric means]

Safety

To date, no deaths and two serious adverse events (SAEs) in one subject have occurred. One of the SAEs was a transient ischemic attack (TIA) which occurred during screening. The other was a hospitalization for acute pain and acroparesthesia due to Fabry Disease which occurred approximately 5 months after the most recent dose of study drug. The SAEs were deemed unrelated to study drug by the investigator. All other treatment emergent AEs were considered unrelated to study drug and except for one, were mild in intensity.

PK: Increases of 2-fold to 5-fold in plasma levels of active enzyme (α-Gal A activity) AUC were observed following co-administration of 150 mg migalastat HCl with agalsidase relative to agalsidase alone. When agalsidase was administered alone, 0.2 mg/kg (Regraptat) had 3.0 fold lower active enzyme exposures than 0.5 mg/kg (Fabryzyme), and both 0.2 mg/kg and 0.5 mg/kg had much lower active enzyme exposures. 12.7, 3 and 4-fold, respectively, than 1.0 mg/kg (Fabryzyme). When co-administered with agalsidase, 150 mg migalastat HCl increased 0.2 mg/kg active enzyme to levels similar to 0.5 mg/kg alone, increased 0.5 mg/kg active enzyme to levels similar to 1.0 mg/kg alone, and increased 1.0 mg/kg active enzyme levels by 2-fold. Generally, 150 mg migalastat HCl provided larger relative increases in plasma active enzyme exposure for the lower doses of agalsidase (0.2 mg/kg and 0.5 mg/kg) than 1.0 mg/kg. A similar trend is observed for increased tissue distribution of agalsidase into skin following co-administration with 150 mg migalastat HCl. Day 2 (24-hours post dose with 0.2 mg/kg) active enzyme levels increased 1.4- to 2.3-fold (mean: 1.8-fold), 1.1- to 3.9-fold for 0.5 mg/kg (mean: 3.1-fold) and 1.6- to 2.1-fold for 1.0 mg/kg (mean: 1.9-fold). Generally, co-administration with 150 mg migalastat HCl had greater increases in plasma active enzyme to baseline than agalsidase administered alone (3-fold). For Patients B, E, and F, agalsidase alone resulted in mild decreases (essentially no change) in active enzyme on Day 2 relative to baseline. Except for Patients I and J, active enzyme levels had returned to near-baseline levels by Day 7. Both of these patients tended to have higher baseline active enzyme levels than other patients. Although a positive drug-drug interaction is clearly demonstrated for the effect of migalastat on agalsidase, the plasma pharmacokinetics of migalastat administered with agalsidase relative to agalsidase alone was negative for an interaction of agalsidase on migalastat C max and AUC (mean ratio of migalastat + agalsidase to migalastat alone = 1.0). [Note, all means presented are geometric means]

Conclusions

1. Preliminary results suggest 150 mg migalastat HCl with 0.2 mg/kg, 0.5 mg/kg, and 1.0 mg/kg agalsidase resulted in 2- to 5-fold increases in plasma active enzyme AUC.

2. Plasma active enzyme AUC for 1.0 mg/kg agalsidase alone was 12.7- and 4.2-fold greater than 0.2 mg/kg and 0.5 mg/kg agalsidase alone, respectively.

3. Active enzyme levels from Day 2 skin biopsies demonstrated consistent increases following co-administration with 150 mg migalastat HCl relative to agalsidase alone, verifying proof-of-concept of increased tissue uptake of ERT by means of a pharmacological chaperone.

4. Co-administration of 150 mg migalastat HCl with agalsidase was generally well-tolerated.

5. Treatment of Patients B, E, and F, agalsidase alone resulted in mild decreases (essentially no change) in active enzyme on Day 2 relative to baseline. Except for Patients I and J, active enzyme levels had returned to near-baseline levels by Day 7. Both of these patients tended to have higher baseline active enzyme levels than other patients. Although a positive drug-drug interaction is clearly demonstrated for the effect of migalastat on agalsidase, the plasma pharmacokinetics of migalastat administered with agalsidase relative to agalsidase alone was negative for an interaction of agalsidase on migalastat C max and AUC (mean ratio of migalastat + agalsidase to migalastat alone = 1.0).

[Note, all means presented are geometric means]