Subjects with Fabry Disease Treated with Migalastat HCl Continue to Demonstrate Stable Renal Function in a Phase 3 Extension Study

1Nópital du Sacré-Cœur, University of Montreal, Canada; 2Hôpital Raymond Poincaré (AP-HP), University of Versailles – St. Quentin en Yvelines (UVSQ), Garches, France; 3Medical Genetics Service, HCMA/UPRGS Porto Alegre, Brazil; 4Royal Free Campus, University College London, London, UK; 5Baylor Research Institute, Dallas, TX; 6Department of Human Genetics, Emory University, Georgia; 7Amicus Therapeutics, 1 Cedar Brook Drive, Cranbury, NJ, USA.

Introduction

Fabry Disease
- Progressive X-linked lysosomal storage disorder with an estimated incidence of 1 in 100,000. Actual incidence is thought to be higher.
- Mutations in the GLA gene lead to a paucity or absence of a α-galactosidase A (α-Gal A) activity.
- More than 800 disease-causing mutations in GLA have been identified (>60% missense).
- Affects males and females; females have mosaics of healthy and diseased cells.
- Globotriaosylceramide (GL-3) and other substrates of α-Gal A accumulate in multiple tissues including the kidney, heart, brain, and skin leading to the symptoms and sequelae of Fabry disease.
- Migalastat HCl for Fabry Disease
 - Orally administered investigational pharmacological chaperone for specific patients.
 - Designed to selectively and reversibly bind and stabilize endogenous α-Gal A in specific patients.
 - Facilitates proper targeting and trafficking of specific mutant forms of α-Gal A from the endoplasmic reticulum to lysosomes where the breakdown of GL-3 and related substrates can proceed.
 - In development for treatment of patients that express mutant forms of α-Gal A identified as amenable to this chaperone in an in vitro GLP-validated assay (estimated 30-50% of patients with Fabry disease).

Migalastat HCl for Fabry Disease
- GLA mutation classification in in GLP validated HEK assay.
- Data points are baseline corrected; represent mean ± standard error (SEM) change from baseline to the mean number of GL-3 inclusions per capillary after 6 months of treatment with migalastat or placebo.
- Analysis of covariance (ANCOVA) model with covariate adjustment for baseline value and factors for treatment group and baseline by treatment interaction. P-value corresponds to least-squares mean difference between migalastat and placebo. *MMRM Placebo change: M6 to M12. Baseline GL-3: 6.14 (Migalastat) and 6.05 (Placebo).

Key Inclusion and Exclusion Criteria for Study 011:
- Males and females, 16 to 74 years, diagnosed with Fabry disease.
- Responsive GLA mutations using the “Clinical trial” human embryonic kidney-293 (HEK) assay.
- Naive to ERT or have not received ERT for 6 months before screening.
- Estimated GFR (MDRD) (eGFR) at screening ≥30 ml/min/1.73 m². Urine GL-3 at screening ≥4 times the upper limit of normal (24-hour collection).
- Patients taking angiotensin converting enzyme inhibitors or angiotensin receptor blockers had been on a stable dose for at least 4 weeks before screening.

Baseline Characteristics of the Intent-to-treat Population from Study 011

<table>
<thead>
<tr>
<th>Male</th>
<th>Female</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>Placebo n=33</td>
<td>Migalastat n=34</td>
<td>Placebo n=33</td>
</tr>
<tr>
<td>Female n (%)</td>
<td>21 (64)</td>
<td>22 (65)</td>
</tr>
<tr>
<td>Male n (%)</td>
<td>12 (36)</td>
<td>12 (35)</td>
</tr>
<tr>
<td>Age Median (range)</td>
<td>57 (24, 64)</td>
<td>46 (16, 68)</td>
</tr>
<tr>
<td>Years since diagnosis Mean (SD)</td>
<td>7.1 (7.8)</td>
<td>5.7 (6.8)</td>
</tr>
<tr>
<td>eGFR (CKD-EPI) mL/min/1.73 m² Mean (SD)</td>
<td>94 (21)</td>
<td>95 (29)</td>
</tr>
<tr>
<td>24-hr Urine Protein (mg) Mean (SD)</td>
<td>452 (626)</td>
<td>342 (459)</td>
</tr>
<tr>
<td>ACEI/ARB/βI use: n (%)</td>
<td>13 (39)</td>
<td>6 (18)</td>
</tr>
<tr>
<td>Previously on ERT: n (%)</td>
<td>12 (36)</td>
<td>5 (15)</td>
</tr>
<tr>
<td>GLP HEK Ameable: n (%)</td>
<td>22 (67)</td>
<td>28 (82)</td>
</tr>
</tbody>
</table>

- Patients were randomized based on GLA mutations classified with the clinical trial HEK assay.
- During the conduct of Study 011, the clinical trial HEK assay was analytically validated in compliance with GCP regulations (GLP HEK assay).
- 17 of 67 randomized patients were re-categorized as having non-amenable mutations based on the GLP HEK assay.
- Renal findings presented in this poster were based on the 41 of 50 patients with amenable mutations using on the GLP HEK assay that completed Study 011.
- Safety results were based on all 67 randomized patients.

Renal Function (To-Date)
- As previously reported for Study 011, GFR in subjects with amenable mutations remained stable over 18-24 months of treatment, with mean annualized eGFR changes of -0.30 ± 0.66 (CKD-EPI eGFR) and +0.79 ± 1.03 (MDRD eGFR) mL/min/1.73 m²/yr.
- The current preliminary analysis indicates that renal function has continued to remain stable in subjects with amenable mutations over an average of 32 months in Studies 011 and 041, with mean annualized eGFR changes of -0.20 ± 0.60 (CKD-EPI eGFR) and +0.63 ± 0.08 (MDRD eGFR) mL/min/1.73 m²/yr.

Safety (All Randomized Patients) (To-Date)
- Migalastat was generally safe and well tolerated.
- No patient met the mandatory stopping criteria: 30% decrease from baseline in serum creatinine, 25% decrease from baseline in cardiac ejection fraction, or cerebrovascular event with significant sequelae.
- There were no withdrawals due to treatment-related AEs or SAEs.
- In Study 011, two SAEs, fatigue and paresthesia (reported in the same patient) were deemed possibly related to migalastat by the Principal Investigator. These SAEs resolved, the patient completed Study 011 and enrolled in Study 041.
- In Study 041, one death, unrelated to treatment, was reported in a 63-year-old male. Significant medical history included obesity, hypertension, type 2 diabetes mellitus and CAD (myocardial infarction, stent placement and triple bypass surgery).
- There were no treatment-related SAEs in Study 041.

Conclusions
- Treatment with migalastat over an average of 32 months was associated with stable renal function in Fabry disease patients with amenable mutations.
- Mean annualized change in eGFR (mL/min/1.73 m²/yr) was: -0.20 ± 0.60 (CKD-EPI) and +0.63 ± 0.08 (MDRD).
- Migalastat was generally safe and well tolerated.